pydruglogics package

Subpackages

Module contents

class pydruglogics.BooleanModel(model=None, file=None, attractor_tool='mpbn', attractor_type='stable_states', mutation_type='topology', model_name='', cloned_equations=None, cloned_binary_equations=None)

Bases: object

add_perturbations(perturbations)
property attractor_tool
property attractor_type
property attractors
property binary_boolean_equations
property boolean_equations
calculate_attractors(attractor_tool, attractor_type)
calculate_global_output(model_outputs, normalized=True)
clone()
from_binary(binary_representation, mutation_type)
get_stable_states()
property global_output
has_attractors()
has_global_output()
has_stable_states()
property model_name
property mutation_type
print()
reset_attractors()
to_binary(mutation_type)
class pydruglogics.Evolution(boolean_model=None, training_data=None, model_outputs=None, ga_args=None, ev_args=None)

Bases: BooleanModelOptimizer

property best_boolean_models
calculate_fitness(ga_instance, solutions, solution_idx)
create_initial_population(population_size, num_mutations, seed=None)
run()
save_to_file_models(base_folder='./results/models')
class pydruglogics.InteractionModel(interactions_file=None, model_name='', remove_self_regulated_interactions=False, remove_inputs=False, remove_outputs=False)

Bases: object

property all_targets
get_activating_regulators(index)
get_inhibitory_regulators(index)
get_interaction(index)
get_target(index)
property interactions
property model_name
print()
size()
class pydruglogics.Logger

Bases: object

classmethod set_logger(level=20, external_lib_off=True)
class pydruglogics.ModelOutputs(input_file=None, input_dictionary=None)

Bases: object

get_model_output(node_name)
property max_output
property min_output
property model_outputs
property node_names
print()
size()
class pydruglogics.ModelPredictions(boolean_models=None, perturbations=None, model_outputs=None, synergy_method='bliss', model_directory=None, attractor_tool=None, attractor_type=None)

Bases: object

get_prediction_matrix()
property predicted_synergy_scores
run_simulations(parallel=True, cores=4)
save_to_file_predictions(base_folder='./results/predictions')
class pydruglogics.Perturbation(drug_data=None, perturbation_data=None)

Bases: object

property drug_effects
property drug_names
property drug_targets
property drugs
property perturbations
print()
class pydruglogics.PlotUtil

Bases: object

static plot_pr_curve_with_ci(pr_df, auc_pr, boot_n, plot_discrete)
static plot_roc_and_pr_curve(predicted_synergy_scores, observed_synergy_scores, synergy_method, labels=None)
class pydruglogics.TrainingData(input_file=None, observations=None)

Bases: object

property observations
print()
property response
property responses
size()
property weight_sum
property weights
pydruglogics.compare_two_simulations(boolean_models1, boolean_models2, observed_synergy_scores, model_outputs, perturbations, synergy_method='bliss', label1='Models 1', label2='Models 2', normalized=True, plot=True, save_result=True)
pydruglogics.execute(train_params=None, predict_params=None)
pydruglogics.sampling_with_ci(boolean_models, observed_synergy_scores, model_outputs, perturbations, synergy_method='bliss', repeat_time=10, sub_ratio=0.8, boot_n=1000, confidence_level=0.9, plot=True, plot_discrete=False, save_result=True, with_seeds=True, seeds=42)
pydruglogics.train(*args, **kwargs)