pydruglogics.model.Evolution
Optimizer that evolves Boolean models using genetic algorithms, fitness evaluation, and parallelization.
- Evolution.calculate_fitness(ga_instance, solutions, solution_idx)
 Fitness function for GA, evaluates each candidate model using the provided training data.
Parameters
ga_instance: Instance of the GA.solutions (list): Batch of solutions (binary vectors).solution_idx (int): Current solution batch index.
Returns - list: Fitness values for each solution.
- Evolution.create_initial_population(population_size, num_mutations, seed=None)
 Create an initial GA population by randomly mutating the reference Boolean model.
Parameters
population_size (int): Population size.num_mutations (int): Number of mutations per individual.seed (int, optional): Seed for reproducibility.
Returns
list: Initial population (binary vectors).
- Evolution.run()
 Launch the evolutionary search, returning the best Boolean models found.
Returns
list: Best Boolean models.
- Evolution.save_to_file_models(base_folder='./results/models')
 Save the best models of the evolution run as .bnet files to disk.
Parameters
base_folder (str, optional): Output directory.