pydruglogics.execution.Executor
Provides training and prediction functions for Boolean models.
- pydruglogics.execution.Executor.train(*args, **kwargs)
 Train a Boolean Model using genetic algorithm and evolution strategy. Finds the models with the best fitness score.
Parameters
boolean_model (BooleanModel): The model to be trained.model_outputs (ModelOutputs): The outputs to be optimized.ga_args (dict): Genetic algorithm parameters.ev_args (dict): Evolution strategy parameters.training_data (TrainingData, optional): Training data for the model.save_best_models (bool): Whether to save the best models.save_path (str): Path to save models.
Returns
List[BooleanModel]: List of models with the best fitness.
- pydruglogics.execution.Executor.predict(*args, **kwargs)
 Predict model outcomes and plot the results.
Parameters
best_boolean_models (list of BooleanModel, optional): Models to use for prediction.model_outputs (ModelOutputs): The outputs to be predicted.perturbations (Perturbation): Perturbation scenarios.observed_synergy_scores (list of str): Observed synergy scores.synergy_method (str): Method for calculating synergy (‘bliss’, etc.).run_parallel (bool): Whether to run in parallel.plot_roc_pr_curves (bool): Whether to plot ROC and PR curves.save_predictions (bool): Whether to save predictions.save_path (str): Path to save predictions.model_directory (str): Directory to load models from if not provided.attractor_tool (str): Tool for attractor analysis.attractor_type (str): Type of attractor analysis.cores (int): Number of CPU cores to use.